Shakerley, Nicole Publications
Permanent URI for this collection
ACPHS student authors are denoted by an asterisk (*).
Browse
Recent Submissions
Item Postprandial Effects of Blueberry (Vaccinium angustifolium) Consumption on Glucose Metabolism, Gastrointestinal Hormone Response, and Perceived Appetite in Healthy Adults: A Randomized, Placebo-Controlled Crossover Trial.(Nutrients, 1/19/2019) Stote, Kim; Corkum, Adele; Sweeney, Marva; Shakerley, Nicole L; Kean, Terri; Gottschall-Pass, KatherineThe consumption of blueberries, as well as the phenolic compounds they contain, may alter metabolic processes related to type 2 diabetes. The study investigated the effects of adding 140 g of blueberries to a higher-carbohydrate breakfast meal on postprandial glucose metabolism, gastrointestinal hormone response, and perceived appetite. As part of a randomized crossover design study, 17 healthy adults consumed a standardized higher-carbohydrate breakfast along with 2 treatments: (1) 140 g (1 cup) of whole blueberries and (2) a placebo gel (matched for calories, sugars, and fiber of the whole blueberries). Each subject participated in two 2-h meal tests on separate visits ≥8 days apart. Venous blood samples and perceived appetite ratings using visual analog scales were obtained prior to and at 30, 60, 90, and 120 min after consuming the breakfast meals. Results show that glucose metabolism, several gastrointestinal hormones, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY) concentrations and perceived appetite did not change significantly with blueberry consumption. However, pancreatic polypeptide (PP) concentrations were statistically significantly higher ( = 0.0367), and the concentrations were higher during 30, 60, 90, and 120 min after consumption of the blueberry breakfast meal than the placebo breakfast meal. Additional research is needed to determine whether blueberries and other flavonoid-rich foods reduce type 2 diabetes risk by modifying gastrointestinal hormones and perceived appetite.Item Hyperglycemia potentiates a shift from apoptosis to RIP1-dependent necroptosis.(Cell Death Discovery;, 5/10/2018) McCaig, William D; Patel, Payal S; Sosunov, Sergey A; Shakerley, Nicole L; Smiraglia, Tori A*; Craft, Miranda M*; Walker, Katharine M*; Deragon, Matthew A*; Ten, Vadim S; LaRocca, Timothy JApoptosis and necroptosis are the primary modes of eukaryotic cell death, with apoptosis being non-inflammatory while necroptosis is highly inflammatory. We previously demonstrated that, once activated, necroptosis is enhanced by hyperglycemia in several cell types. Here, we determine if hyperglycemia affects apoptosis similarly. We show that hyperglycemia does not enhance extrinsic apoptosis but potentiates a shift to RIP1-dependent necroptosis. This is due to increased levels and activity of RIP1, RIP3, and MLKL, as well as decreased levels and activity of executioner caspases under hyperglycemic conditions following stimulation of apoptosis. Cell death under hyperglycemic conditions was classified as necroptosis via measurement of markers and involvement of RIP1, RIP3, and MLKL. The shift to necroptosis was driven by RIP1, as mutation of this gene using CRISPR-Cas9 caused cell death to revert to apoptosis under hyperglycemic conditions. The shift of apoptosis to necroptosis depended on glycolysis and production of mitochondrial ROS. Importantly, the shift in PCD was observed in primary human T cells. Levels of RIP1 and MLKL increased, while executioner caspases and PARP1 cleavage decreased, in cerebral tissue from hyperglycemic neonatal mice that underwent hypoxia-ischemia (HI) brain injury, suggesting that this cell death shift occurs . This is significant as it demonstrates a shift from non-inflammatory to inflammatory cell death which may explain the exacerbation of neonatal HI-brain injury during hyperglycemia. These results are distinct from our previous findings where hyperglycemia enhanced necroptosis under conditions where apoptosis was inhibited artificially. Here we demonstrate a shift from apoptosis to necroptosis under hyperglycemic conditions while both pathways are fully active. Therefore, while our previous work documented that intensity of necroptosis is responsive to glucose, this work sheds light on the molecular balance between apoptosis and necroptosis and identifies hyperglycemia as a condition that pushes cells to undergo necroptosis despite the initial activation of apoptosis.Item Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis.(The Journal of Biological Chemistry, 6/24/2016) LaRocca, Timothy J; Sosunov, Sergey A; Shakerley, Nicole L; Ten, Vadim S; Ratner, Adam JNecroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD.